Data Mining Meets Network Management: The NEMESIS Project
نویسندگان
چکیده
Modern communication networks generate large amounts of operational data, including traffic and utilization statistics and alarm/fault data at various levels of detail. These massive collections of network-management data can grow in the order of several Terabytes per year, and typically hide “knowledge” that is crucial to some of the key tasks involved in effectively managing a communication network (e.g., capacity planning and traffic engineering). In this short paper, we provide an overview of some of our recent and ongoing work in the context of the NEMESIS project at Bell Laboratories that aims to develop novel data warehousing and mining technology for the effective storage, exploration, and analysis of massive network-management data sets. We first give some highlights of our work on Model-Based Semantic Compression (MBSC), a novel data-compression framework that takes advantage of attribute semantics and data-mining models to perform lossy compression of massive network-data tables. We discuss the architecture and some of the key algorithms underlying SPARTAN , a model-based semantic compression system that exploits predictive data correlations and prescribed error tolerances for individual attributes to construct concise and accurate Classification and Regression Tree (CaRT) models for entire columns of a table. We also summarize some of our ongoing work on warehousing and analyzing network-fault data and discuss our vision of how data-mining techniques can be employed to help automate and improve fault-management in modern communication networks. More specifically, we describe the two key components of modern fault-management architectures, namely the event-correlation and the root-cause analysis engines, and propose the use of mining ideas for the automated inference and maintenance of the models that lie at the core of these components based on warehoused network
منابع مشابه
M-FastMap: A Modified FastMap Algorithm for Visual Cluster Validation in Data Mining
Network Data Mining and Analysis: The <$>{\cal {NEMESIS}}<$> Project p. 1 Privacy Preserving Data Mining: Challenges and Opportunities p. 13 Survey Papers (Invited) A Case for Analytical Customer Relationship Management p. 14 On Data Clustering Analysis: Scalability, Constraints, and Validation p. 28 Association Rules (I) Discovering Numeric Association Rules via Evolutionary Algori...
متن کاملA New Architecture Based on Artificial Neural Network and PSO Algorithm for Estimating Software Development Effort
Software project management has always faced challenges that have often had a great impact on the outcome of projects in future. For this, Managers of software projects always seek solutions against challenges. The implementation of unguaranteed approaches or mere personal experiences by managers does not necessarily suffice for solving the problems. Therefore, the management area of software p...
متن کاملProject Time and Cost Forecasting using Monte Carlo simulation and Artificial Neural Networks
The aim of this study is to present a new method to predict project time and cost under uncertainty. Assuming that what happens in projects implementation which is expressed in the form of Earned Value Management (EVM) indicators is primarily related to the nature of randomness or unreliability, in this study, by using Monte Carlo simulation, and assuming a specific distribution for the time an...
متن کاملAutomatic Discovery of Technology Networks for Industrial-Scale R&D IT Projects via Data Mining
Industrial-Scale R&D IT Projects depend on many sub-technologies which need to be understood and have their risks analysed before the project can begin for their success. When planning such an industrial-scale project, the list of technologies and the associations of these technologies with each other is often complex and form a network. Discovery of this network of technologies is time consumi...
متن کاملNetwork Risk Evaluation by Data Mining
Risk management is one of the most prominent concepts which has recently been brought into sharp focus regarding security issues in computer networks. Scientifically speaking, risk in the field of network security is a generalized matter leading the organization to the provision of resolutions which target resources and profits of the organization. This paper has discussed what methods are ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001